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Abstract-Two-dimensional, steady, incompressibie, turbulent. hydrodynamic boundary layers near walls 
have been calculated with the aid of a model of turbulence relating the turbulent shear stress to the 
product of: the square root of local energy of turbulence, a length-scale of turbulence and the gradient 
time-mean velocity. Both the length scale and the energy are calculated from parabolic differential 
equations, solved sjrnu~t~eous~y with that for ~amen~um. Boundary layers exhibiting a large variety 
of streamwise pressure distributions, viz. those featured in the I%)68 Stanford Conference, have been 

successfully predicted. Methods of extension to heat-transfer prediction are discussed. 

NOMENCLATURE 

a, b, c, d, constants: 
7, E P(‘~-~~. total shear stress: 

CD* constant; 
Cp. CM, CR., constants; 
E. constants; 

&, = j~(~-~~~~.d~spi=~ern~~~k~~ss. 

e, SE +(z + 3 + 2). turbulent kinetic 

energy ; 62, 

HI29 so bl,/h2, shape factor; 

= [; :(I -$)dx,, ~;;;;~ne,,: 

’ 

in 
Iength scale of turbulence; 8, f [L’i;*R&‘. 

P,? 
rn~x~~g-~en~ ; 
mean pressure in free stream; Subscripts 

47 constant; c, a point at the edge of the Couette flow; 

R23 
82uG 

G, the point where the boundary layer 
zs - momentum-deficit Reynolds 

v * 
merges with the free stream; 

number; s, a point at the wall; 

.% E ?: shear stress coefficient; 
WE’ 

Ui. time-mean velocity in direction i; 

shear velocity; 

UG. 
4, 

Xi, 

time-mean velocity in free stream; 
instantaneous fluctuating component 
of q; 
Cartesian coordinate system (i = I,?, 3), 
with streamwise direction in 1. 

Greek symbols 

d P1 constant; 
Qlq 02, constants; 

P. density of fluid; 
v, kinematic viscosity of fluid; 
K. constant; 

X2 
91 E - I non-d~rne~s~o~a~ distance from 

~X2lG the wall; 
* 
4 constant : 

‘% 
b21G dP 

E-.--’ 

2pc; dx ’ 

0. - starting station of the experiment. 

1. INTRODVGITON 

1.1. Heat transfer and the turbulent boundary layer 
CONVECTIVE heat and mass transfer are processes 
which are dominated by hydrodynamics. It is therefore 
unde~t~dable that interest in heat transfer has been 
the motive for many investigations of a purely hydro- 
dynamic character; for one must be able to predict the 
distributions of velocity and effective viscosity before 
there can be any hope of predicting temperature and 
convective heat Aux; and, when the temperature differ- 
ences are large enough to cause property variations, 
~i~ff~t~n~~~~ solution of the hydr~yn~ic and heat- 
transfer problems is needed. 

Motives of this kind have prompted two distinct 
lines of work: (i) development of numerical solution 
procedures: and (ii) the invention of turbulence models, 
i.e. sets of equations of which the sob&ions emulate, 

in important respek, real turbulent Mds. However, 
the mere existence of sohrtion procedures and of tur- 
bulence models is not enough : it is necessary to deter- 
mine, by careful comparison with experiment. whether 
their implications are indeed sufficiently realistic. 
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The present paper is a contribution to this validation 
process. it describes the appIication of an established 
solution procedure, combined with a recently-devet- 
oped turbulence model, to sets of experimental condi- 
tions which have been subjected to scrutiny also by 
other workers. The general conclusion is that the pro- 
cedure works well, and is therefore a satisfactory basis 
for use and further development. 

1.2. The equations of’ the h_vdrodyamic boundary layer 
It has long been established that, in a uniform- 

property two-dimensional, steady. turbulent boundary 
layer, having negligible normal turbulent stresses, the 
mean velocities are given by the foliowing equations: 

(1.1) 

and 

where xi(i = 1.2.3) = Cartesian coordinatesystem with 
direction 1 as that of the main 
stream, 

Ui E time-mean velocity in the direc- 
tion i, 

ui = inst~taneous fluctuating com- 
ponent of IJ’(. 

P = mean pressure in free stream, 
Y = kinematic viscosity of fluid, 

and p zz density of tluid. 

In these equations, in addition to LrI and U2, the 
second-order correlation uluz is another dependent 
variable; therefore, in order to solve the equation, addi- 
tional information is required concerning the behavior-n 
of u1I(z in a boundary layer. Together with equations 
(1.1) and LZ}, and the boundary conditions, this infor- 
mation must completeiy specify the mathemati~ prob- 
lem. Such info~ation constitutes a “turbulence 
model”. 

In an earlier paper, Ng and Spalding [1] reported 
the development of a turbulence model based on the 
combined ideas of Prandtl [2] Koimogorov [3] and 
Rotta [4]; the model specifies -m as a product of 
the square root of the turbulent kinetic energy of the 
fluid e. (= ${z+z+z].), its length-scale of turbu- 
lence I. and the local mean velocity gradient. Both e 
and 1 are calculated from transport equations; the 
dependent variables of these are r and rl. The model 
was shown in [I] to give realistic predictions for a 
number of self-similar boundary layers near walls. In 
the present paper, the model is applied to predict two- 
dimensional turbulent boundary-layer flows along 
smooth walls, subjected to non-uniform streamwise 
pressure gradients: the predictions are compared with 

experimental data. in order to draw some further con- 
clusions on the degree of universality which the model 
possesses. 

A brief description of the assumptions of the turbu- 
lence model will be given in Section 2; there is no 
change, even of numerical constants. from that which 
was reported in [l]. The method of solution and the 
boundary conditions for the relevant equations are 
described in Section 3; while the results of the pre- 
dictions are presented in Section 4. Discussions of the 
predicted results, and their comparison with exper- 
iment, will be found in Section 5; this section afso 
provides a comparison with predictions based upon a 
version of the mixing-length model of turbulence. 

2. THE ~RBULENC~ MOE1EL 

The essentiai features of the assumptions about the 
turbulent shear stress. energy and length scale are con- 
veyed by the following equations: 

(i) the effective-viscosity assumption: 

12.1) 

(ii) the energy-conservation equation : 

convection diffusion 

+& s%!L 
i: i 

2 

sx2 

generation 

-CDefjl; 

dissipation 
(2.2) 

(iii) the equation for the energy-length product: 

&g!+&$& g&+f&‘) 
. 1 ‘-2 c L , / 

convection diffusion 

creation 

-Cue+ 
destruction 

additional influence of the wall 

In these equations, x2 represents the distance from 
the wail and the quantities, o,, Ce, 01, e2. Cr. C,,t. C, 
and q are assumed to be universal constants, the values 
of which are tabulated in Table I. The origin of these 
values is described in [l], where it is shown that they 
give the best predictions for four cases of self-similar 
boundary-layer flows. 

Table 1. The values of the constants in equations (2.2) and (2.3) 

Constants CD CP CM cw 0, 02 
Value 0.1 0.84 0.055 1.2 z F.i 2 9 
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Equations (2.2) and (2.3) are-valid under the condi- 
tions that: (i) the density of the fluid is uniform; and 
(ii) the Reynolds number of turbulence &l/v is every- 
where much greater than unity. 

There will be no further discussion of the significance 
or validity of the various terms in equations (2.1). (2.2) 
and (2.3). However, it should be mentioned that, when 
the last term on the R.H.S. of equation (2.3) is neglected, 
the present model becomes identical to the one investi- 
gated by Rodi and Spalding [5] for jet flows remote 
from walls. The last term in equation (2.3) represents 
the additional influence of a solid boundary layer on 
the turbulence structurein a boundary layer; it vanishes 
for flows remote from walls. for which x2 is very large. 

3. SOLUTION PROCEDURE 

The set of simultaneous equations (1.1). (1.2). (2.1), 
(2.2) and (2.3) can now be solved numerically for the 
dependent variables U i, e and 1. The solution procedure 
employed is the finite-difference method of Patankar 
and Spalding [6], which integrates the equations in a 
forward-marching procedure. However, to integrate 
those equations, one must prescribe suitable boundary 
conditions for the dependent variables; these boundary 
conditions can be classified into two types: 

(i) Boundary conditions at the edges of the boundary layer 
In a turbulent boundary layer on a wall, the flow 

can be divided into two regions: a and b. as shown 
in Fig. 1. 

Region b is close enough to the wall for the convec- 
tion terms of the differential equations to be negligible; 
it can be treated. for the purpose of calculating the 
velocity profile, as one-dimensional, i.e. a Couette flow. 
In the larger region, a. we can assume that e*liv is 
much greater than unity; one consequence is that the 
first term within the parenthesis on the R.H.S. of 
equation (1.2) can be neglected. 

Conditions within region b. The properties of the flow 
in region b can be deduced from well-known empirical 
functions, once the properties”of flow at the point C 
(Fig. 1) are known. These empirical functions are: 

!2$!Z~~ln(E.L!i$_S), (2.4a) 

and 
(2.4b) 

[l/x& = KC& (2.4~) 

where LJ, E (Q/P)*. “shear-stress velocity”, and K and E 
are assumed to be universal constants, namely 0.435 
and 9.0. These values have been chosen by reference 
to experimental measurements of velocity profiles near 
walls: the K value is rather higher than has been 
presumed by some authors, but Patankar and Spalding 
[6] and Ng et al. [7] h ave had some success with it. 

Equation (2.4a) is the well-established “law of the 
wall”; equations (2.4b) and (2.4~) express the results of 
measurements of the turbulence energy near walls [l]. 
It should be noted that both equations (2.4b) and 
(2.4~) satisfy equations (2.2) and (2.3) exactly in the 
one-dimensional region if the pressure gradient, 

- UI 
0 

- 

‘Sohd boundory 

FIG. 1. The two regions (a and b) within a wall 
boundary layer. 

dP/dxr, vanishes; they are good approximate solutions 
even when dP/dxi is finite. 

The above relations can serve as boundary condi- 
tions for the small-xz edge of the domain of inte- 
gration; this can therefore be confined to the region 
marked a. 

(ii) Boundary conditions at thefree stream 
At the free-stream edge of the boundary layer. the 

following boundary conditions for the dependent vari- 
ables are prescribed : 

and 

u,= UG. 

e = 0. 

(2Sa) 

(2Sb) 

el = 0, (2Sc) 

where U&xi j* = the mean velocity of the main stream. 
Of course, one could also work with finite values of e 
and el, corresponding to a finite value of the free-stream 
turbulence; however, the turbulence levels in the 
streams of the experiments to be considered were not 
reported: but they were probably small. 

(iii) Initial profiles oJ Ur, e and 1 
In addition to the boundary conditions discussed in 

the foregoing paragraph, one requires profiles of Vi, 
e and 1 at the upstream end of the forward integration. 
Of these three quantities, Ui and e are directly measur- 
able in a boundary layer. The profile of I can be deduced 
from equation (2.1) if, in addition to Ur and e, the m 
profile is known. When information concerning the 
initial profiles is absent, guesses must be made; those 
described in the Appendix have formed the bases of 
the computation to be presented; but the downstream 
results show little sensitivity to the starting condition 
in most cases. 

(iv) Some details of the numerical computations 
The results of predictions presented in the following 

section were obtained with 30 cross-stream grid points; 
the condition was imposed that V,[x&+ should be 
between 30 and 200; in general, grid points spaced to 
give equal amounts of mean flow between them were 

*+ $ means “a function of”. 
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FIG, 2. Kontinued on p. 1165.) 

satisfactory in this respect. Computations made with 
other numbers and distributions of grids confirm that 
the above values give good ~rnp~~~onal accuracy. 

The momentum bahince of all the numerical solu- 
tions was also checked. Tn particular, the solution of 
a Rat-plate boundary layer [g-j showed that the rate of 
change of momentum-deficit thickness, d&/dxl, is 
within 0.1% of its predicted focal wall-shear coef- 
ficient ss. 

4. EXPERIMENTAL DATA CHOSEN FOR COMPAIUSON 
WLTH PREDICTIONS 

The differential equations have been solved with 
boundary conditions appropriate to the turbulent 
boundary-layer flow near walls which appear in the 
data collection of Coles and Hirst [a]. The information 
supple is the CFG _ .x1 vagary and the starting 
profile of iJ 1. U~~~~tu~at~ly, the e and -m profiles 
are not provided for all the flows; so, in the predictions. 
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I% 2. Comparison of HIP, SS and R2 predictions with experiments; -, prediction: x, data 
according to [9]. 

it is asassumed that e and 1 vary according to equations obtained from Table 2. For each flow, the predicted 
(A.l) and (A.2) at the starting point of the integration. variation with xi of HI2 (S 15~/&, the shape factor). 

s5 (E rs/(pU$}, the wall-shear coefficient) and RZ 
Results of predicrirzns ( = 62 U&J, the momentum-deficit Reynolds number): 

In Fig. 2 are presented comparisons with ah the ex- is compared with the relevant experimental data; the 
p&mental data apart from those for Riabouchinsky’s lines represent predictions, and crosses represent data 
moving-belt flow [IO]. Each Aow in the diagram is To facilitate more detailed inspection and discussion, 
denoted by an identity number (IDENT’); the nature of six cases (DENT = 1400,24!30,2500,2800,3300 and 
the experiment and the names of investigator(s) can be 4800 in Fig. 2) are replotted to a larger scale in Fig, 
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Table 2. Name of investigator/s and nature of the 
experiment for dews shown in Fig. 2 

3.0 1 

42 

IDENT 1nvestigator:s Nature of experiment Year 2.0 

1100 

1200 

1300 

1400 

1500 
2100 

2200 
2300 
2400 

2500 
2600 

2700 

2800 

2900 
3000 
3100 
3200 
3300 
3500 
3600 
3700 
3800 
4000 
4100 
4400 

4500 

4800 

5000 
5100 
5.200 
5300 
6300 

Ludwieg and 
Tiilmann 
Ludwieg and 
Tilhnann 
Ludwieg and 
Tillmann 
Wieghardt and 
Tillmann 
Tillmann 
Schubauer and 
Klebanoff 
CIauser 
CIauser 
Bradshaw and 
Ferriss 
Bradshaw 
Bradshaw and 
Ferriss 
Herring and 
Norbury 
Herring and 
Norbury 
Perry 
Bell 
Bell 
Bell 
Bradshaw 
Newman 
Moses 
Moses 
Moses 
Moses 
Moses 
Schubauer and 
Spangenberg 
Schubauer and 
Spangenkrg 
Schubauer and 
Spangenberg 
Fraser 
Fraser 
Stratford 
Stratford 
Bauer 

Mild adverse 
pressure gradient 
Strong adverse 
pressure gradient 

1949 

1949 

Accelerating flow 1949 

Flat plate flow 1944 
Ledge flow 1945 

Flow No. i 
Flow No. 2 

1950 
1954 
1954 

Relaxing flow 1965 
1= -0.15 1966 

J = -0.255 1965 

B = -0.35 1967 

p = -0.53 

Constant pressure 
Series D 
Series E 
r = 0 -* -0.255, C 
Airfoil, Series 2 
Case 1 
Case 2 
Case 3 
Case 5 
Case 6 

1967 
1966 
1966 
1966 
1966 
1967 
1951 
1964 
1964 
1964 
1964 
1964 

Flow A 1960 

Flow B 1960 

Flow E 1960 
Flow A 1956 
Flow B 1956 
Experiment 5 1959 
Experiment 6 1959 
Spillway, 60” 1951 

3-8. For the first five of these, the predictions of U1, 
T and e are also compared with the available data at 
the last station of the relevant experiment; these pre- 
dictions and data are displayed in Figs. 9-13. 

5. DISCUSSION 

5.1. Comparison of the predictions with experiments 
From Fig. 2. one can infer that the predictions agree 

tolerably with the experimental data. Inspection of all 
predictions made by other methods for the same con- 
ditions. reported in the Proceedings of the Stanford 
Conference, shows that where the present method fails, 
e.g. IDENT = 1200, 2900 and 5300, most of the other 
methods fail also: there is reason to suppose that these 
flows were not truly two-dimensional. The present pre- 
dictions appear to be in as good agreement with the 
data as the experimental accuracy warrants. 

X~~3(.XXhX_*_X_X-*-~_~~ y 
,f 

x4-x-* 

I.0 Solra and broken _ , ” 

lines cotnclde 

0.002 I- I 

h * 
d Sol,d and broken 

10.0 

/ , / 

0 I.0 2.0 3.0 40 3.0 

5. m 

FIG. 3. Comparison of prediction of fit2. & and & with 
theex~rimental data of Wieghardt and Tiilmanns’ flat plate 
Row [8f (IDENT = 1400); -, present prediction; ---, 

mixing-Iength model; x . data. 

0 0005 I 

““/“” 
-- 

200 
%ird and brOkWI r tsnn colncldc 

0 
2.0 4D 6.0 8.0 

x,. ff 

FIG. 4. Comparison of prediction of H12, Ss and Rz with 
the experiment of Bradshaw and Ferriss [17] (IDENT = 
2400): -, present model with the initial profile of e from 
equation (A.l) or with e and 1 profiles from the experiment; 
-..-. present model with initial profile of e from equation 
(5.1); ----( mixing-length model; x, data according to 

Coles and Hirst; 0, data according to [17]. 
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20.0 
+a 

h X 
x 

2 / Solid ond broken 
to.0 X lines comcide 

0 2.0 4s 6,# ao 

Xi4 ft 

FG 5. Comparison of prediction af Hr I. & and Rz 
with the experiment of Bradshaw [20] “a = -0.15” 
(DENT = 2500); -, present model with initial 
profile of e from equation {Al) or equation (52) or 
with irtitial profiles or f and I from the experimnt; 

----. mixinpIengti3 model; x, data 

HI2 i -x, 

t 

X X x 

I*0 Lines coincide ’ 

4.0 

Lines coincide ’ X 

FIG. 6, (=omparison of prediction of Hiz, SS and R2 
with the experiment of Herring and Norbury [VI]. 
“@ ax -0.53” (IDENT = 2800); -, present model 
with initiaf e profile from equation (Al) or (5.1); 

----, mixing-length model; x * data 

t*o 

Hi2 

LO 

a" 10.0 

x plm4--x x-x-x- 7,. 
All lines eOmcidt 

FIG. 7. Comparison of prediction of Eilz. Ss and R1 
with the experiment of Bradshaw [20] “X = 0 -, 
-0.255, Flow c” (IDENT = 3300); -, present 
model; -.-, prefent model with initial profiles of e 
and f from the experiment; ----. ~~x~~g-~~~~~ 

m&l; x ~ data. 

FIG. 8. Comparison of prediction of Htl. and Rz with 
the experiment of Schubauer and Spangenberp. [27] 

“PMW K’ iDENT = 4800t; -. present modeI; ----, 
miting_Iength model: x t data. 

Possibk sources of error in the predictions. (a) The 
“keg-law” assumption (equation 2.4a) cfose to rhc wall- 
The present prediction method employs the Iogarithmic 
law of the wail, for the calculation of ~~ from U1 and 
x2 at the point C (see Fig. 1 f. This practice is relativefy 
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1 I 4 

0 2.0 4.0 6.0 6.0 

x2, cm 

0 2.0 4.0 6.0 8.0 

~2, cm 

0 2.0 4.0 6.0 

FIG. 9. Comparison of predicted Lit, ‘5 and e protites with 
the experiment of Wieghardt and Tillmann [S] at -‘cl = 
4.987 m; -, prediction; x, data. (a) Comparison of the 
U ,iiU~ profile. (b) Predicted r/(pU& profile; data not avail- 

able. (c) Predicted e*/U, profile; data not available. 

simple, and in reasonable agreement with experimental 
data over a wide range of flow conditions. In reality 
however, rs must depend upon other variables, such as 

dP/dxr and [e]c etc. The effect of the former has been 
accounted for in the “wall-law” developed by Patankar 
and Spalding [6] ; and the latter influence appears in 

formulae developed by Spalding [l I] Wolfshtein [12] 
and Runchal [13]. It will be valuable to establish later. 
whether any of these proposals can improve agreement 

with reliable experimental data. 
(b) The assumption concerning rhe starting profiles-It 
may be recalled that. for all the predictions shown in 
Fig. 2. the initial profiles of e and 1 have had to be 
based on the procedure in the Appendix. In order to 
test the influence of the starting profiles, flows 2400, 
2500 and 3300 were recalculated with initial profiles 
of e and I identical to those which, in these cases, were 
reported by the experimenters [1 is deduced from t. e 
and U t profiles according to equation (2.1)]. Wherever 
these predictions deviate from the earlier result, they 
are represented by chain-dotted (-.-) lines in Figs. 4, 
5 and 7; they show little difference from the earlier 
predictions, indicating that the assumed profiles for e 

I I I I 
x 

0 LO 2.0 3.0 4.0 5.0 

0.10. 

(cl 

1 
0 I.0 2.0 3.0 4.0 5.0 

XB in 

FIG. 10. Comparison of predicted Ut, T and e profiles with 
the experiment of Bradshaw and Ferriss at x1 = 7.9 ft; 
-, prediction; x, data. (a) Comparison of the U,/UG 
profile. (b) Comparison of the t&U& profile. (c) Predicted 

e*,!U, profile; data not available. 

and 1 [equations (A. 1) and (A.2)] are adequate for these 

flows. 
As a further test, flows 2400, 2500 and 2800 were 

repeated with a linear initial profile of e, namely: 

e = a(1 -7). (5.1) 

where 

This profile would be realistic had the flow not been 
subjected to any pressure variation upstream of the 
starting point. The predictions are shown in double- 
chained (-. .-) lines in Figs. 4-6. For flows 2500 and 
2800 (Figs. 5 and 6) there are no discernible differences 
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0002 
Ib) 

I 

I I \ I I 
0 1.0 2.0 3.0 

X.2, In 

FIG. 11. Comparison of predicted Ut, T and e profiles with 
theexperiment of Bradshaw “a = 0.15” at x1 = 7 ft. (a) Com- 
parison of the UJUG profile; -, prediction; x, data. 
(b) Comparison of the r/(pU& profile; -, prediction; 
--x--, data. (c) Comparison of the ef/Uc profile: -, 

prediction; - x -, data. 

between the predictions with the two different starting 
profiles; the solid and double-chained lines coincide. 
However, for flow 2400, although there is no significant 
difference in the prediction of R2 and Hlz, a worse 
prediction of ss is obtained as shown in Fig. 4. This 
is explainable by the fact that, downstream of a severely 
decelerated flow, the e profile would be closer to 
equation (A.l) than to equation (5.1). In most boundary 
layers. the e profile should lie between these two, 
depending on its upstream conditions. 

Factors aflecting the accuracy of the experimental 
data. (a) Data for the wall-shear coefficient, ss-The 
“experimental” values of ss are based not on direct 
measurements, but on deductions from velocity-profile 
measurements by the “Clauser-plot” method; this em- 
ploys equation (2.4a) but with K as 0.41 and E as 7.8. 
Some indication of the accuracy of the data for ss can 
be obtained from Fig. 4. In the figure, the differences 

0 

0.002 i(b) 

1 / 

0.5 1.0 I.5 

x29 in 

1 

c”z 

UC 

0 a5 I.0 I.5 

FIG. 12. Comparison of predicted Ut, T and e profiles with 
the experiment of Herring and Norbury “fi = -0.53” at 
x1 = 4ft; -, prediction; x , data. (a) Comparison of the 
Ul/UG profile. (b) Comparison of the r/(pU& profile. (c) 

Predicted ef/UG profile; data not available. 

are displayed of the values deduced by Coles and Hirst 
by the Clauser-plot method from those deduced by 
Bradshaw and Ferriss from Preston-tube measure- 
ments for the same experimental conditions. Differ- 
ences as large as 10% can be seen. 
(b) The lateral convergence or divergence of the bound- 
ary layer-In wind-tunnel measurements. boundary- 
layer growth along the side walls can cause lateral 
convergence or divergence of the boundary layer under 
investigation; then equations (l.l), (1.2), (2.2) and (2.3) 
cease to be valid. This breakdown is evident in flow 
2100 (Fig. 2). Figure 14 shows the same effect by way 
of the quantities PL and PR, the definitions of which 
are displayed in the figure. In a boundary-layer flow 
without convergence, PL should be equal to PR. How- 
ever, as shown in the figure, PL starts to deviate from 
PR at x1 of about 23 ft. Insofar as this is not due to 
incorrect values of ss or to the breakdown of other 
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/ I 1 

0 1.0 2.0 3.0 

x2, In 

1 lbl 

x 

I , 1 
0 I.0 2.0 3.0 

x2, In 

0 ID 2.0 3.0 

x2, In 

FIG. 13. Comparison of predicted profiles of U1, r and e 
with the experiment of Bradshaw “z = 0 + -0.255, Flow c” 
at.u, = 7ft. (a) Comparison of the Ul/LiG profile; -, pre- 
diction; x , data. (b) Comparison of the r,@Li$) profile; 
-, prediction; x, data. (c) Comparison of the e*/ll~ 

profile; -. prediction; - x r, data. 

4C 

PL 
PR 

1 

x 

0 IO 20 
x1, ft 

FIG. 14. Momentum balance in flow 2100; 

30 

PL=O(LJdR2)-l-1-8 
s 

x’ H,zRZUGdL’G 
(~110 

I 

=I 

PRzO L’:v-‘~.uI 
LX110 

where [.x1],, is defined as the starting point of the 
experiment and 0 as l/[ 0;’ RZlo ; x . PL. A. PR. 

boundary-layer assumptions, the cause can be at- 
tributed to the lateral convergence of the boundary 
layer. As indicated in Fig. 2, the predictions start to 
deviate from the experimental data at about the same 
position as PL deviates from PR. 
(c) Inadequate number qt’ points to specif\, the mean- 
velocity prqfile-The integral parameters HL2 and R 
can be wrongly ascribed when there are too few cross- 
stream points close to the wall to allow correct deter- 
mination of the velocity profile. This is probably the 
cause of disagreement in HII between experiment and 
prediction of flows 3 100. 3600. 3700 and 4100 in Fig. 2. 

Comparison of predicted U,. e and 5 profiles with 
experiments 

Figures 9-13 display the predicted profiles of Lir, L’c. 
r:(pU$ and &!Lrc at the last station of flows 1400. 

2400.2500,2800 and 3300, and compare them with the 
available data The mean-velocity profiles are well pre- 

dicted for all five cases. However, as shown in Fig. 11. 
the predicted boundary-layer thickness appears to be 
smaller than that of the experimental data. Since the 
model no longer requires the boundary-layer thickness 
to determine the length scale as do the models employed 
by Glushko [14]. Patankar and Spalding [6], Bradshaw 
rt al. [15] and Nee and Kovasznay [16], the slight 
discrepancy in the predicted boundary-layer thickness 
should not seriously affect the correct prediction of 
other properties of the flow. 

A more rigorous test of the turbulence model is its 
ability to predict the r profiles correctly. The compari- 
sons of these profiles with data are shown in Figs. lob. 
lib, 12b and 13b. It is noted that for all cases, the r 
profile has not been well predicted near the free-stream 
edge of the boundary layer, where however, the value 
of r is small compared with its local maximum. 

The predicted profiles for e*;Uc seem to fall below 
the experimental values as shown in Figs. 1 lc and 13~. 
This perhaps is due to the fact that the value of CD. 

taken as 0.1, is somewhat too large. According to [I], 
the data for pipe flows indicate that CD varies between 
0.06 and 0.09. The best value of CD can be determined 
only by further research. 

Near the free stream (Figs. I Ic and 13~). the discrep- 
ancy between predicted and measured e’s may be 
further increased by the presence of free-stream turbu- 
lence in the experiments; free-stream turbulence has 
been left out of the present predictions [see equation 
(2Sb)], although it would be easy to include it if data 
on its magnitude were available. 

5.2. Comparisons ofpredictions using the present model 
with those ruing rhe mixing-length mode[ 

The results of prediction by Prandtl’s mixing-length 

model for flows 1400.2400.2500. 2800, 3300 and 4800 
(see Ng et ul. [7]) are displayed in Figs. 3-8 in dotted 
lines. 

For flows 1400,2500,2800 and 3300. there is no great 
difference in the predictions between the present model 
and the mixing-length model as shown in Figs. 3 and 
5-7. However. for strongly non-equilibrium flows. like 
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2400 and the downstream part of 4800, the present 
model gives better predictions of the overall properties 
of the boundary layer. 

5.3. Use of the model for the prediction of heat transfer 

Now that the computational procedure has been 

shown to be adequate for the prediction of the hydro- 
dynamics of two-dimensional turbulent boundary 
layers. its extension to heat-transfer is straightforward. 
Several ways of making the extension are possible, 
namely : 

(a) 

(b) 

(4 

By way of an “analogy”, for example, that of 
Chilton and Colbum [21]. 
By use of a more sophisticated connection be- 
tween the shear-stress distribution and the heat- 
transfer rate, for example, that of Spalding [22], 
as extended by Kestin and Persen [23], Gardner 
and Kestin [24]. Smith and Shah [25] and 
Spalding [26]. 
By solution of an additional partial differential 
equation, namely that for stagnation enthalpy, as 
in the work of Patankar and Spalding [6]. 

. . 
Of method (a) It may be sad that the method is simple 

but inaccurate. especially when gradients of stream 
velocity and of wall temperature are significant. It 
would be unreasonable. if heat-transfer predictions 
were the main desired outcome, to take so much trouble 
over the hydrodynamics and so little over the thermal 
effects. 

Method (b) is somewhat more tedious to perform; 
but the work involved is less demanding than that 
associated with the solution of an additional differential 
equation. It may be the most accurate method for high 
Prandtl numbers. for which the thermal boundary layer 
is confined to the region very close to the wall. 

For moderate or low Prandtl numbers, method (c) 
is to be preferred; and, since three differential equations 
are already being solved, the addition of a fourth is no 
great matter. Of course. an assumption must be made 
for the effective thermal conductivity ofheat. At present. 
the only suficiently-tested assumption is that which 
rests on the existence of an effective (turbulent) Prandtl 
number, the value of which is of the order of unity, and 
to be determined from experiments. This is the assump 
tion incorporated into the computer program of [6]. 

6. CONCLUSIONS 

(1) The present model of turbulence is capable of 
predictingsteady two-dimensional, hydrodynamic, tur- 
bulent boundary layers on smooth walls with non- 
uniform streamwise pressure gradients, from one set of 
constants. 

(2) The accuracy of prediction is as satisfactory as 
the reliability of the data warrants. 

(3) The values of some of the constants in the model 
can probably still be adjusted to improve agreement 
between the prediction and the most reliable of the 
experimental data. 

(4) For flows near the state of local equilibrium, there 
is no discernible difference between the predictions of 
the present model and those of the mixing-length 
model. 

(5) The present model gives better predictions than 
the mixing-length model for non-equilibrium boundary 
layers when the experimental starting profiles are pro- 
vided for U1, e and 7. 

(6) The model and calculation procedure therefore 
form a satisfactory basis on which to build a method 
of calculating convective heat transfer. 
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APPENDIX 

The starting profile of e is assumed to be: 

e = a+bq+c$+-dq’. 

In this equation, the quantities a, b. c and d are evaluated 
from the following conditions for e: 

Ci) at ‘I = [VI=. 

and de:dq = E + /&I. 

where 

(ii) at q = 1. 

e = 0. 

and de/d4 = 0. 
(iii) For I, it is assumed that: 

i- cgr,. (A.2) 

In this equation, I, is the mixing length: thus. 
I, = fcx~ for i./K > q r 0 

and 
I, = i [.x21G for 1 > 7 > i.;~, 

(Al) where I P 0.09. a constant. 

PREVISION NUMERIQUE DE COUCHES LIMITES BIDIMENSIONNELLES SUR PAROIS 
LISSES A L’AIDE D’UN MODELE DE TURBULENCE A DEUX EQUATIONS 

Resume-La couche limite hydrodynamique turbulente bidimensionnelle stationnaire, incompressible 
pres dune paroi a ete calculee a l’aide dun modtle de turbulence. Ce demier rattache la tension de 
cisaillement turbulent au produit des grandeurs suivantes: la racine carree de l’energie locale de turbulence. 
une echelle de turbulence et le gradient de vitesse moyenne. L’echelle de turbulence et l’tnergie sont 
obtenues a partir d’equations aux dtrivtes partielles paraboliques risolues en simultaneite avec I’equation 
du mouvement. Des couches limites presentant diverses distributions longitudinales de pression, telles 
que celles d&rites dans les travaux de la Conference de Stanford (1968). ont tti calcultes avec succts. 

Des mithodes d’extension a la prevision du transfert de chaleur sont discutees. 

ZUR BERECHNUNG ZWEIDIMENSIONALER GRENZSCHICHTEN AN GLATTEN 
WANDEN MIT EINEM ZWEIGLEICHUNGS-MODELL FtiR DIE TURBULENZ 

Zusammenfawmg-Es wurden zweidimensionale, stationare, inkompressible. turbulente Stromungs- 
grenzschichten an Wanden berechnet. Dabei wurde ein Turbulenzmodell verwendet, bei dem die turbulente 
Schubspannung mit dem Produkt aus der Quadratwurzel der lokalen Energie der Turbulenz, einer 
kennzeichnenden Lange der Turbulenz und des Gradienten Zeit-mittlere Geschwindigkeit verkniipft wird. 
Sowohl die kennzeichnende Lange wie die Energie werden aus parabolischen Differentialgleichungen 
berechnet, die gleichzeitig mit der Differentialgleichung fiir den Impuls gel&t werden. Grenzschichten 
mit einer starken Anderung der Druckverteilung in Stromungsrichtung, niimlich solche, die auf der 
Stanford-Konferenz 1968 vorgestellt wurden. konnten erfolgreich berechnet werden. Methoden zur 

Ausdehnung des Verfahrens auf die Berechnung des Warmeiibergangs werden diskutiert. 

PACYET ABYMEPHbIX IlOl-PAHMYHblX CJIOEB HA ~J-IAAKMX CTEHKAX 
C l-lOMOUIblO iMO,QEJlM TYP!iYJIEHTHOCTM, OllMCblBAEMO~ 

ABYMII YPABHEHMRMM 

tiHUOTSWlR--AaH paC'IeTLlByMepHbIXCTaUHOHapHbIXHCCXGiMaeMbIX TyfJ6yneHTHblX rH.LlpOLlHHaMH- 

'IeCKWX IIpUCTeHHbtX IlOrpaHH'lHbIX CnOeB C flOMOlUb,O M0iJeJ-W Typ6yneHTiiOcTH, CB~3blBiWNUe~ 

Typ6ynCHTHOe CnBHI'OBOe HallpSEKeHHe C llpOil3BeLleHileM KBailpaTHOrO KOpHSl JlOKaflbHOfi 3HeprHH 

Typ6yneHTHOCTHHalrlaCllITa6Typ6yneHTHOCTHHrpanHeHTCpenHeAnOB~MeHHCKOp~Te.Mac~Ta6 

H sneprm 0npenenmoTca ~3 napa6cmwecK~x mi&$epeHukianbHb~x ypaswetreti, peuaeMbix OPHO- 

LlpeMeHHO C ypaBHeHHIMH KOJIH'ieCTBa LIBHW(eHHR. c yClleXOM pZICCWlTaHb1 IlOrpaHHYHbIe CnOH. 

xapaKTeptf3yIouIIiecn 60nbLLIHM pa3Hoo6pa3HeM paCITpWWIeHHfi JIaBneHHR no TeSeHmo, T. e. Tex, 

0 KoTopblXrOBOpHnOCbB 1968r.HaKOH~epeHUaH~CT3H~Opne.06cy~naeTcRnpeMeHeHHeLLaHHOrO 

MeTona MS pacqera rennoo6MeHa. 


