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Abstract— Two-dimensional, steady, incompressible, turbulent. hydrodynamic boundary layers near walls
have been calculated with the aid of a model of turbulence relating the turbulent shear stress to the
product of : the square root of local energy of turbulence, a length-scale of turbulence and the gradient
time-mean velocity. Both the length scale and the energy are calculated from parabolic differential
equations, solved simultaneously with that for momentum. Boundary layers exhibiting a large variety
of streamwise pressure distributions, viz. those featured in the 1968 Stanford Conference, have been
successfully predicted. Methods of extension to heat-transfer prediction are discussed.

NOMENCLATURE
a. b,c,d, constants;
Cp, constant;
Cp,Ca,Cw, constants;
E, constants;
e, = 4(u? + u? + u3), turbulent kinetic
energy;
Hiy,, = 51/52, shape factor;
L. length scale of turbulence;
by mixing-length;
P, mean pressure in free stream;
q, constant;
R,. = f?j_f;’f momentum-deficit Reynolds
v number;
s, = «f—. shear stress coefficient;
pUs
Ui time~mean velocity in direction i;
s * R
u., = (;) , shear velocity;
Ug. time~mean velocity in free stream;
u;, instantaneous fluctuating component
of Ug 5
Xi, cartesian coordinate system (i = 1, 2, 3),
with streamwise direction in 1.
Greek symbols
G, constant;
0.0z,  constants;
o, density of fluid;
v, kinematic viscosity of fluid;
K, constant;
n = -—)iz-——, non-dimensional distance from
[x2)e the wall;
A constant;
. = [x2]e dP
' T 2pCh dx’

U, —
T, = p| v———u;u, . total shear stress:
ax 2
« U
&1, = j‘ (1 - U—I> dx,. displacement
0 G thickness;
©y U
42, = J Ui<1 -—i) dx,, momentum-
° Ye G deficit thickness;
0, = (U("S Rg](? :
Subscripts
C, a point at the edge of the Couette flow;
G, the point where the boundary layer
merges with the free stream;
S, a point at the wall;
0, starting station of the experiment.

1. INTRODUCTION

1.1. Heat transfer and the turbulent boundary layer
CONVECTIVE heat and mass transfer are processes
which are dominated by hydrodynamics. It is therefore
understandable that interest in heat transfer has been
the motive for many investigations of a purely hydro-
dynamic character; for one must be able to predict the
distributions of velocity and effective viscosity before
there can be any hope of predicting temperature and
convective heat flux; and, when the temperature differ-
ences are large enough to cause property variations,
simultaneous solution of the hydrodynamic and heat-
transfer problems is needed.

Motives of this kind have prompted two distinct
lines of work: (i) development of numerical solution
procedures: and (ii) the invention of turbulence models,
ie. sets of equations of which the solutions emulate,
in important respects, real turbulent fluids. However,
the mere existence of solution procedures and of tur-
bulence models is not enough: it is necessary to deter-
mine, by careful comparison with experiment. whether
their implications are indeed sufficiently realistic.
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The present paper is a contribution to this validation
process. [t describes the application of an established
solution procedure, combined with a recently-devel-
oped turbulence model. to sets of experimental condi-
tions which have been subjected to scrutiny also by
other workers. The general conclusion is that the pro-
cedure works well, and is therefore a satisfactory basis
for use and further development.

1.2. The equations of the hvdrodynamic boundary layer
It has long been established that, in a uniform-
property two-dimensional, steady. turbulent boundary
layer, having negligible normal turbulent stresses, the
mean velocities are given by the following equations:

Uy Uy
oy, (L1
0xy  Oxy
and
cU cU ¢ Uy —— 1 dP
Ul(:. 1‘4'Uz(.—l=—c-“ Vf:——"i-—uluz)———, 1.2)
éx, Cxy Cx3z\ Oxy p dx,

where x;{i = 1.2, 3) = cartesian coordinate system with

direction 1 as that of the main
stream,

U; = time-mean velocity in the direc-
tion i,

u; = instantaneous fluctuating com-
ponent of U,

P = mean pressure in free stream,

v = kinematic viscosity of fluid,

and p = density of fluid.

In these equations, in addition to U, and U,;, the
second-order correlation #;%; is another dependent
variable; therefore, in order to solve the equation, addi-
tional information is required concerning the behaviour
of iz in a boundary layer. Together with equations
{1.1) and 1.2), and the boundary conditions, this infor-
mation must completely specify the mathematical prob-
lem. Such information constitutes a “turbulence
model”.

In an earlier paper, Ng and Spalding [1] reported
the development of a turbulence model based on the
combined ideas of Prandtl [2] Kolmogorov [3] and
Rotta [4]; the model specifies — i 5 as a product of
the square root of the turbulent kinetic energy of the
fluid e, (= ${u? +ui+ui)), its length-scale of turbu-
lence I, and the local mean velocity gradient. Both ¢
and [ are calculated from transport equations; the
dependent variables of these are ¢ and e/. The model
was shown in [1] to give realistic predictions for a
number of self-similar boundary layers near walls. In
the present paper, the model is applied to predict two-
dimensional turbulent boundary-layer flows along
smooth walls, subjected to non-uniform streamwise
pressure gradients: the predictions are compared with
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experimental data. in order to draw some further con-
clusions on the degree of universality which the model
pOossesses.

A brief description of the assumptions of the turbu-
lence model will be given in Section 2. there is no
change, even of numerical constants. from that which
was reported in [1]. The method of solution and the
boundary conditions for the relevant equations are
described in Section 3; while the results of the pre-
dictions are presented in Section 4. Discussions of the
predicted results, and their comparison with exper-
iment, will be found in Section 3; this section also
provides a comparison with predictions based upon a
version of the mixing-length model of turbulence.

2. THE TURBULENCE MODEL

The essential features of the assumptions about the
turbulent shear stress, energy and length scale are con-
veyed by the following equations:

(i} the effective-viscosity assumption:
L‘:L’v) .

~ N

X2

—uyuy = etl

{i1) the energy-conservation equation:
ée ée t ¢ Ce
Uit Uy s = — el —
Xy £X3
diffusion

+ EHCU‘ )N
X2

generation
~Cpetl;
dissipation

convection

(iii) the equation for the energy-length product:
del del a (ef’[ él

Uy —+ U, =
x4 dx;  6x,

convection diffusion

ef? e \)

610Xy 03 Xy

+Cpetl? Uy
8x2
creation

—Cyet
destruction

s [ q
—Cw<“‘—) e".
X2

additional influence of the wall

(2.3

In these equations, x, represents the distance from
the wall and the quantities, g,, Cp, 6y, 62, Cp. Cyy. C,
and g are assumed to be universal constants, the values
of which are tabulated in Table 1. The origin of these
values is described in [1], where it is shown that they
give the best predictions for four cases of seif-similar
boundary-layer flows.

Table 1. The values of the constants in equations (2.2) and (2.3)

Constants Co Cp Cyu
Value 0.1 0.84 0.055

Cw [ 0y
22 2 1.2

3
PN




Predictions of two-dimensional boundary layers

Equations (2.2) and (2.3) are.valid under the condi-
tions that: (i) the density of the fluid is uniform: and
(ii) the Reynolds number of turbulence e*l/v is every-
where much greater than unity.

There will be no further discussion of the significance
or validity of the various terms in equations (2.1), (2.2)
and (2.3). However, it should be mentioned that, when
the last term on the R.H.S. of equation (2.3) is neglected,
the present model becomes identical to the one investi-
gated by Rodi and Spalding [5] for jet fiows remote
from walls. The last term in equation (2.3) represents
the additional influence of a solid boundary layer on
the turbulence structure in a boundary layer it vanishes
for flows remote from walls. for which x, is very large.

3. SOLUTION PROCEDURE

The set of simultaneous equations (1.1), (1.2), (2.1),
(2.2) and (2.3) can now be solved numerically for the
dependent variables U, ¢ and I. The solution procedure
employed is the finite-difference method of Patankar
and Spalding [6], which integrates the equations in a
forward-marching procedure. However, to integrate
those equations, one must prescribe suitable boundary
conditions for the dependent variables: these boundary
conditions can be classified into two types:

(i) Boundary conditions at the edges of the boundary layer

In a turbulent boundary layer on a wall, the flow
can be divided into two regions: a and b. as shown
in Fig. 1.

Region b is close enough to the wall for the convec-
tion terms of the differential equations to be negligible;
it can be treated. for the purpose of calculating the
velocity profile, as one-dimensional, i.e. a Couette flow.
In the larger region, a, we can assume that etl/v is
much greater than unity; one consequence is that the
first term within the parenthesis on the RH.S. of
equation (1.2) can be neglected.

Condirions within region b. The properties of the flow
in region b can be deduced from well-known empirical
functions, once the properties*of flow at the point C
(Fig. 1) are known. These empirical functions are:

- T
Wl 1y, (E.——[”]CL’), (2.42)
U. K v
A [~wwg/e]c = Ch, (2.4b)
and
[l/x2]c = kC}. (2.40)

where U, = (15/p)}, “shear-stress velocity”, and x and E
are assumed to be universal constants, namely 0.435
and 9.0. These values have been chosen by reference
to experimental measurements of velocity profiles near
walls; the x value is rather higher than has been
presumed by some authors, but Patankar and Spalding
[6] and Ng et al. [7] have had some success with it.
Equation (2.4a) is the well-established “law of the
wall™; equations (2.4b) and (2.4c) express the results of
measurements of the turbulence energy near walls [1].
It should be noted that both equations (2.4b) and
(2.4c) satisfy equations (2.2) and (2.3) exactly in the
one-dimensional region if the pressure gradient,
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F1G. 1. The two regions (a and b) within a wall
boundary layer.

dP/dx,, vanishes; they are good approximate solutions
even when dP/dx, is finite.

The above relations can serve as boundary condi-
tions for the small-x; edge of the domain of inte-
gration; this can therefore be confined to the region
marked a.

(i) Boundary conditions at the free stream

At the free-stream edge of the boundary layer, the
following boundary conditions for the dependent vari-
ables are prescribed :

U, = Usg. (2.5a)
e=0, (2.5b)

and
el=0, (2.5¢)

where Ug{x1}* = the mean velocity of the main stream.
Of course, one could also work with finite values of e
and el, corresponding to a finite value of the free-stream
turbulence; however, the turbulence levels in the
streams of the experiments to be considered were not
reported: but they were probably small.

(iii) Initial profiles of Uy, e and 1

In addition to the boundary conditions discussed in
the foregoing paragraph, one requires profiles of U,
e and ! at the upstream end of the forward integration.
Of these three quantities, U, and e are directly measur-
able in a boundary layer. The profile of ! can be deduced
from equation (2.1)if, in addition to U, and e, the uyus
profile is known. When information concerning the
initial profiles is absent, guesses must be made; those
described in the Appendix have formed the bases of
the computation to be presented; but the downstream
results show little sensitivity to the starting condition
in most cases.

(iv) Some details of the numerical computations

The results of predictions presented in the following
section were obtained with 30 cross-stream grid points;
the condition was imposed that U,[x;]c/v should be
between 30 and 200; in general, grid points spaced to
give equal amounts of mean flow between them were

*{ } means “a function of .
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FiG. 2. (Continued or p. 1165)

satisfactory in this respect. Computations made with
other numbers and distributions of grids confirm that
the above values give good computational accuracy.
The momentum balance of all the numerical solu-
tions was also checked. In particular, the solution of
a flat-plate boundary layer [8] showed that the rate of
change of momentum-deficit thickness, dé,/dx,, is
within 0.1% of its predicted local wall-shear coefl-

ficient sg.

4. EXPERIMENTAL DATA CHOSEN FOR COMPARISON
WITH PREDICTIONS

The differential equations have been solved with
boundary conditions appropriate to the turbulent
boundary-layer flow near walls which appear in the
data collection of Coles and Hirst [97. The information
supplied is the Ug ~ x; variation and the starting
profile of U,. Unfortunately, the ¢ and ~ %71 profiles
are not provided for all the flows; so, in the predictions.
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Fi6. 2. Comparison of Hy,, S5 and R, predictions with experiments; —, prediction; x, data
according to [9].

it is assumed that e and [ vary according to equations  obtained from Table 2. For each flow, the predicted
(A.1) and (A.2) at the starting point of the integration.  variation with x; of H,, (= 6,/6,, the shape factor).
ss (=15/{pU&}, the wall-shear coefficient) and R»

Results of predictions (=8, Ug/v, the momentum-deficit Reynolds number),
In Fig. 2 are presented comparisons with all the ex-  is compared with the relevant experimental data; the
perimental data apart from those for Riabouchinsky’s  lines represent predictions, and crosses represent data.
moving-belt flow [10]. Each fiow in the diagram is Tofacilitate more detailed inspection and discussion,
denoted by an identity number (IDENT); the nature of  six cases (IDENT = 1400, 2400, 2500, 2800, 3300 and
the experiment and the names of investigator(s) can be 4800 in Fig. 2) are replotted to a larger scale in Figs.
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Table 2. Name of investigator/s and nature of the
experiment for flows shown in Fig. 2

IDENT  Investigator/s  Nature of experiment  Year

1100 Ludwieg and Mild adverse

Tiilmann pressure gradient 1949
1200 Ludwieg and Strong adverse

Tillmann pressure gradient 1949
1300 Ludwieg and

Tillmann Accelerating flow 1949
1400 Wieghardt and

Tillmann Flat plate flow 1944
1500 Tillmann Ledge flow 1945
2100 Schubauer and

Kliebanoff 1950
2200 Clauser Flow No. ¢ 1954
2300 Clauser Flow No. 2 1954
2400 Bradshaw and

Ferriss Relaxing flow 1963
2500 Bradshaw x = —0.15 1966
2600 Bradshaw and

Ferriss 2= ~0.255 1965
2700 Herring and

Norbury = 035 1967
2800 Herring and

Norbury = ~053 1967
2900 Perry 1966
3000 Bell Constant pressure 1966
3100 Bell Series D 1966
3200 Bell Series E 1966
3300 Bradshaw 2 =0 —0255C 1967
3500 Newman Airfoil, Series 2 1951
3600 Moses Case 1 1964
3700 Moses Case 2 1964
3800 Moses Case 3 1964
4000 Moses Case 5 1964
4100 Moses Case 6 1964
4400 Schubauer and

Spangenberg Flow A 1960
4500 Schubauer and

Spangenberg Flow B 1960
4800 Schubauer and

Spangenberg Flow E 1960
5000 Fraser Flow A 1956
5100 Fraser Flow B 1956
5200 Stratford Experiment 5 1959
5300 Stratford Experiment & 1959
6300 Bauer Spillway, 60° 1951

3-8. For the first five of these, the predictions of U,
7 and e are also compared with the available data at
the last station of the relevant experiment; these pre-
dictions and data are displayed in Figs. 9-13.

5. DISCUSSION

5.1. Comparison of the predictions with experiments

From Fig. 2. one can infer that the predictions agree
tolerably with the experimental data. Inspection of all
predictions made by other methods for the same con-
ditions, reported in the Proceedings of the Stanford
Conference, shows that where the present method fails,
e.g IDENT = 1200, 2900 and 5300, most of the other
methods fail also; there is reason to suppose that these
flows were not truly two-dimensional. The present pre-
dictions appear to be in as good agreement with the
data as the experimental accuracy warrants.
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FiG. 3. Comparison of prediction of H,,, 5 and R, with

the experimental data of Wieghardt and Tillmanns’ flat plate

flow [8] (IDENT = 1400); ——, present prediction; ~——,
mixing-iength model; x, data.
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Fic. 4. Comparison of prediction of H,;, Ss and R, with

the experiment of Bradshaw and Ferriss [17] (IDENT =

2400); —, present model with the initial profile of ¢ from

equation (A.1) or with e and ! profiles from the experiment;

—-.—, present model with initial profile of ¢ from equation

(5.1); =—~~, mixing-length model; x, data according to
Coles and Hirst; O, data according to [17].
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with initial e profile from equation (A.1) or (5.1);
———, mixing-length model; x, data.
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FiG. 8. Comparison of prediction of H,,. and R, with
the experiment of Schubauer and Spangenberg [27]
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aia.

Possible sources of ervor in the predictions. (a) The
“log-law” assumption ( equation 2.4a) close to the wall—
The present prediction method employs the logarithmic
law of the wall, for the calculation of ts from U, and
x5 at the point C (see Fig. 1). This practice is relatively
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FiG. 9. Comparison of predicted U, 7 and e profiles with
the experiment of Wieghardt and Tillmann [8] at x, =
4.987 m; ——, prediction; x, data. (a) Comparison of the
U,/Ug profile. (b) Predicted 1/(pU3) profile; data not avail-
able. (c) Predicted e?/Ug profile; data not available.

simple, and in reasonable agreement with experimental
data over a wide range of flow conditions. In reality
however, ts must depend upon other variables, such as
dP/dx, and [e]c etc. The effect of the former has been
accounted for in the “wall-law” developed by Patankar
and Spalding [6]; and the latter influence appears in
formulae developed by Spalding [11] Wolfshtein [12]
and Runchal [13]. It will be valuable to establish later,
whether any of these proposals can improve agreement
with reliable experimental data.

(b) The assumption concerning the starting profiles—It
may be recalled that, for all the predictions shown in
Fig. 2, the initial profiles of e and ! have had to be
based on the procedure in the Appendix. In order to
test the influence of the starting profiles, flows 2400,
2500 and 3300 were recalculated with initial profiles
of e and / identical to those which, in these cases, were
reported by the experimenters [{ is deduced from 1. e
and U, profiles according to equation (2.1)]. Wherever
these predictions deviate from the earlier result, they
are represented by chain-dotted (—.—) lines in Figs. 4,
5 and 7; they show little difference from the earlier
predictions, indicating that the assumed profiles for e
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FiG. 10. Comparison of predicted U, r and e profiles with

the experiment of Bradshaw and Ferriss at x; = 7.9ft;

——, prediction; x, data. (a) Comparison of the U,/Us

profile. (b) Comparison of the t/(pU2) profile. (c) Predicted
e*/Ug profile; data not available.

and / [equations (A.1) and ( A.2)] are adequate for these
flows.

As a further test, flows 2400, 2500 and 2800 were
repeated with a linear initial profile of e, namely:

e=q(l—n), (5.1)

where
n = xa/[x2]a-

This profile would be realistic had the flow not been
subjected to any pressure variation upstream of the
starting point. The predictions are shown in double-
chained (--.~) lines in Figs. 4-6. For flows 2500 and
2800 (Figs. 5 and 6), there are no discernible differences
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FiG. 11. Comparison of predicted U, r and e profiles with

the experiment of Bradshaw “x = 0.15” at x, = 7{t. (a) Com-

parison of the U,/Ug profile; ——, prediction; x, data.

(b) Comparison of the t/(pU3) profile; ——, prediction;

-x~, data. (c} Comparison of the e*/U; profile; —,
prediction; — x -, data.

between the predictions with the two different starting
profiles; the solid and double-chained lines coincide.
However, for flow 2400, although there is no significant
difference in the prediction of R, and H;,, a worse
prediction of ss is obtained as shown in Fig. 4. This
is explainable by the fact that, downstream of a severely
decelerated flow, the e profile would be closer to
equation (A.1) than to equation (5.1). In most boundary
layers, the ¢ profile should lie between these two,
depending on its upstream conditions.

Factors affecting the accuracy of the experimental
data. (a) Data for the wall-shear coefficient, ss—The
“experimental” values of ss are based not on direct
measurements, but on deductions from velocity-profile
measurements by the “Clauser-plot” method; this em-
ploys equation (2.4a) but with x as 0.41 and E as 7.8.
Some indication of the accuracy of the data for ss can
be obtained from Fig. 4. In the figure, the differences
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F1G. 12. Comparison of predicted U,, r and e profiles with
the experiment of Herring and Norbury “f = —0.53" at
x; = 4ft; —, prediction; x, data. (a) Comparison of the
U,/Ug¢ profile. (b) Comparison of the t/(pU2) profile. (c)
Predicted e*/U; profile; data not available.

are displayed of the values deduced by Coles and Hirst
by the Clauser-plot method from those deduced by
Bradshaw and Ferriss from Preston-tube measure-
ments for the same experimental conditions. Differ-
ences as large as 109, can be seen.

(b) The lateral convergence or divergence of the bound-
ary layer—In wind-tunnel measurements, boundary-
layer growth along the side walls can cause lateral
convergence or divergence of the boundary layer under
investigation; then equations (1.1), (1.2), (2.2) and (2.3)
cease to be valid. This breakdown is evident in flow
2100 (Fig. 2). Figure 14 shows the same effect by way
of the quantities PL and PR, the definitions of which
are displayed in the figure. In a boundary-layer flow
without convergence, PL should be equal to PR. How-
ever, as shown in the figure, PL starts to deviate from
PR at x; of about 23ft. Insofar as this is not due to
incorrect values of ss or to the breakdown of other
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where {x,]o is defined as the starting point of the
experiment and 0 as 1/[U&R;]o: x. PL. A. PR.
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boundary-layer assumptions, the cause can be at-
tributed to the lateral convergence of the boundary
layer. As indicated in Fig. 2, the predictions start to
deviate from the experimental data at about the same
position as PL deviates from PR.

(c) Inadequate number of points to specify the mean-
velocity profile—The integral parameters H{, and R
can be wrongly ascribed when there are too few cross-
stream points close to the wall to allow correct deter-
mination of the velocity profile. This is probably the
cause of disagreement in H,, between experiment and
prediction of flows 3100, 3600. 3700 and 4100 in Fig. 2.

Comparison of predicted U, e and t profiles with
experiments

Figures 9-13 display the predicted profiles of U, Ug,
t/pU3) and e*/Ug at the last station of flows 1400,
2400, 2500, 2800 and 3300, and compare them with the
available data. The mean-velocity profiles are well pre-
dicted for all five cases. However, as shown in Fig. 11,
the predicted boundary-layer thickness appears to be
smaller than that of the experimental data. Since the
model no longer requires the boundary-layer thickness
to determine the length scale as do the models employed
by Glushko [ 14]. Patankar and Spalding [6], Bradshaw
et al. [15] and Nee and Kovasznay [16], the slight
discrepancy in the predicted boundary-layer thickness
should not seriously affect the correct prediction of
other properties of the flow.

A more rigorous test of the turbulence model is its
abulity to predict the t profiles correctly. The compari-
sons of these profiles with data are shown in Figs. 10b,
11b, 12b and 13b. It is noted that for all cases, the t
profile has not been well predicted near the free-stream
edge of the boundary layer, where however, the value
of 7 is small compared with its local maximum.

The predicted profiles for e*;Ug; seem to fall below
the experimental values as shown in Figs. 11c and 13c.
This perhaps is due to the fact that the value of Cp,
taken as 0.1, is somewhat too large. According to [1],
the data for pipe flows indicate that Cp varies between
0.06 and 0.09. The best value of Cp can be determined
only by further research.

Near the free stream (Figs. 11c and 13c). the discrep-
ancy between predicted and measured ¢’s may be
further increased by the presence of free-stream turbu-
lence in the experiments; free-stream turbulence has
been left out of the present predictions [see equation
(2.5b)], although it would be easy to include it if data
on its magnitude were available.

5.2. Comparisons of predictions using the present model
with those using the mixing-length mode!

The results of prediction by Prandtl’s mixing-length
model for flows 1400, 2400, 2500, 2800, 3300 and 4800
(see Ng et al. [7}) are displayed in Figs. 3-8 in dotted
lines.

For flows 1400, 2500, 2800 and 3300, there is no great
difference in the predictions between the present model
and the mixing-length model as shown in Figs. 3 and
5-7. However, for strongly non-equilibrium flows, like
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2400 and the downstream part of 4800, the present
model gives better predictions of the overall properties
of the boundary layer.

5.3. Use of the model for the prediction of heat transfer

Now that the computational procedure has been
shown to be adequate for the prediction of the hydro-
dynamics of two-dimensional turbulent boundary
layers, its extension to heat-transfer is straightforward.
Several ways of making the extension are possible,
namely:

(a) By way of an “analogy”, for example, that of
Chilton and Colburn [21].

{(b) By use of a more sophisticated connection be-
tween the shear-stress distribution and the heat-
transfer rate, for example, that of Spalding [22],
as extended by Kestin and Persen [23], Gardner
and Kestin [24]. Smith and Shah [25] and
Spalding [26].

(¢) By solution of an additional partial differential
equation, namely that for stagnation enthalpy, as
in the work of Patankar and Spalding [6].

Of method (a)it may be said that the method is simple
but inaccurate, especially when gradients of stream
velocity and of wall temperature are significant. It
would be unreasonable. if heat-transfer predictions
were the main desired outcome, to take so much trouble
over the hydrodynamics and so little over the thermal
effects.

Method (b) is somewhat more tedious to perform;
but the work involved is less demanding than that
associated with the solution of an additional differential
equation. It may be the most accurate method for high
Prandt] numbers, for which the thermal boundary layer
is confined to the region very close to the wall.

For moderate or low Prandtl numbers, method (¢)
is to be preferred; and, since three differential equations
are already being solved, the addition of a fourth is no
great matter. Of course, an assumption must be made
for the effective thermal conductivity of heat. At present.
the only sufficiently-tested assumption is that which
rests on the existence of an effective (turbulent) Prandtl
number, the value of which is of the order of unity, and
to be determined from experiments. This is the assump-
tion incorporated into the computer program of [6].

6. CONCLUSIONS

(1) The present model of turbulence is capable of
predicting steady two-dimensional, hydrodynamic, tur-
bulent boundary layers on smooth walls with non-
uniform streamwise pressure gradients, from one set of
constants.

(2) The accuracy of prediction is as satisfactory as
the reliability of the data warrants.

(3) The values of some of the constants in the model
can probably still be adjusted to improve agreement
between the prediction and the most reliable of the
experimental data.

(4) Forflowsnear the state of local equilibrium, there
is no discernible difference between the predictions of
the present model and those of the mixing-length
model.
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(5) The present model gives better predictions than
the mixing-length model for non-equilibrium boundary
layers when the experimental starting profiles are pro-
vided for U,, e and .

(6) The model and calculation procedure therefore
form a satisfactory basis on which to build a method
of calculating convective heat transfer.
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APPENDIX
The starting profile of ¢ is assumed to be:

e=a+bn+cn+dn’.

K. H. NG and D. B. SPALDING

In this equation, the quantities a, b, ¢ and d are evaluated

from the following conditions for e:

(i) at n=[n]ec.
]
plc
and de/dn = ¢ + |¢l,
b dpP
where e= [‘Cz]:; s —
2pCD dxl
(i) at n=1
e =0,
and de/dn = 0.
(iii) For [, it is assumed that:
[ =Chl,. (A.2)

In this equation, /,, is the mixing length: thus,

Im = Kkxyfor A/k >0 >0

and

In=4[x3]g for 1 >n 2 ik,

where 4 = 0.09, a constant.

PREVISION NUMERIQUE DE COUCHES LIMITES BIDIMENSIONNELLES SUR PAROIS
LISSES A L'AIDE D'UN MODELE DE TURBULENCE A DEUX EQUATIONS

Reésume—La couche limite hydrodynamique turbulente bidimensionnelle stationnaire, incompressible
prés d'une paroi a été calculée a laide d’'un modéle de turbulence. Ce dernier rattache la tension de
cisaillement turbulent au produit des grandeurs suivantes: la racine carrée de I'énergie locale de turbulence,
une échelle de turbulence et le gradient de vitesse moyenne. L’echelle de turbulence et I'énergie sont
obtenues a partir d'équations aux dérivées partielles paraboliques résolues en simultanéité avec I'équation
du mouvement. Des couches limites présentant diverses distributions longitudinales de pression, telles
que celles décrites dans les travaux de la Conférence de Stanford (1968). ont été calculées avec succés.
Des meéthodes d’extension a la prévision du transfert de chaleur sont discutées.

ZUR BERECHNUNG ZWEIDIMENSIONALER GRENZSCHICHTEN AN GLATTEN
WANDEN MIT EINEM ZWEIGLEICHUNGS-MODELL FUR DIE TURBULENZ

Zusammenfassung—Es wurden zweidimensionale, stationire, inkompressible, turbulente Strémungs-
grenzschichten an Winden berechnet. Dabei wurde ein Turbulenzmodell verwendet, bei dem die turbulente
Schubspannung mit dem Produkt aus der Quadratwurzel der lokalen Energie der Turbulenz, einer
kennzeichnenden Linge der Turbulenz und des Gradienten Zeit-mittiere Geschwindigkeit verkniipft wird.
Sowohl die kennzeichnende Linge wie die Energie werden aus parabolischen Differentialgleichungen
berechnet, die gleichzeitig mit der Differentialgleichung fiir den Impuls gelost werden. Grenzschichten
mit einer starken Anderung der Druckverteilung in Strédmungsrichtung, nimlich solche, die auf der
Stanford-Konferenz 1968 vorgestellt wurden, konnten erfolgreich berechnet werden. Methoden zur
Ausdehnung des Verfahrens auf die Berechnung des Wirmeiibergangs werden diskutiert.

PACYET ABVYMEPHBIX MOrPAHUYHBIX CAOEB HA TJIAAKUX CTEHKAX
C NMOMOUbIO MOJEJN TYPBYJEHTHOCTH, OINMUCBIBAEMO
ABYMA YPABHEHUAMU

AnsoTamms — [aH pac4eT AByMEDHbIX CTAUHOHAPHBIX HECXHMAEMbIX TYPOYNEHTHBIX THAPOAHHAMH-
YeCKHX MPUCTEHHBIX MOTPAHHYHLIX C/IOEB C MOMOWBIO MOJENH TypOyNeHTHOCTH, CBA3bIBAIOLWEN
TypOYNEHTHOE CABMIOBOE HANPSAXKEHHE C MPOH3IBEIEHHEM KBAaAPATHOIO KOPHA MOKAINLHOR IHEPTHH
TypOy/NeHTHOCTH Ha MaclITad TYPOYJIEHTHOCTH M I'PAOHEHT CPeaHEN MO BPEMEHU ckopocTH. Maciutaé
M JHEPrHa Ofpedensorcs u3 napabonuueckux audpdepeHUMaNbHBIX YPaBHEHUH, PELUAEMbIX OIHO-
BPEMEHHO C YDAaBHEHMAMH KOJIHYECTBa ABWXCHHA. C yCNeXoM pacCYMTaHbl MOrpaHM4YHbIE CIIOH,
XapakTepH3yiouHsecs GobIIRM Pa3sHOOGPa3HeM pacnpeneseHvit OasfeHUs MO TEYEHH!O, T. €. Tex,
0 KOTOpPBIX FOBOPHIOCH B 1968 r. Ha koHdepenunu B CtaHdopae. OOcyxkaaeTca NPUMEHEHUE JAHHOTO
MeTo/a OJIA pacyeTa TemnooGmeHa.



